

Status of AIRS at ECMWF

ECMWF AIRS team changes:

- Tony McNally
- Andrew Collard (new ex UK)
- •Thomas Auligne (new ex Meteo France)
- Richard Engelen
- Marco Matricardi
- Phil Watts
- Jonathon Smith
- Frederic Chevallier

Status of AIRS NWP impact

•Day 1 scheme implemented in operations October 2003 (preoperational trials suggested neutral to slightly positive impact over 100 cases)

Post-operational trial:

AIRS impact from 70 cases of 28R1 for 500hPa geopotential Northern Hemisphere (top two lines) and Southern Hemisphere (bottom two lines). Period tested: 20040301 to 20040509 (nb. NOAA-17 loss and new humidity analysis)

- Complete diagnosis of single instrument experiments
- Study modification of observation error covariance (O)
- •Further study of de-noised Principal Component (PC) data
- Improve bias correction
- Study introduction of cloud contaminated / cleared radiances
- Develop advanced sounder radiative transfer model (RTM)
- Complete CO2 production (COCO) and prepare GEMS
- Implement already tested elements (cloud detection / emissivity)

Understanding single instrument experiments (1)

Anomaly correlation of 500hPa height for the **Southern Hemisphere** (average of 50 cases summer and winter 2003 verified with OPS analyses)

AIRS out performs any other single instrument forecast impact

But why?

... analysis increments ...

RMS temperature increments at model level 36 (approximately 400hPa) averaged over 26 days (June 2003)

No radiance assimilation (NORAD) increments

AIRS only assimilation minus NORAD increments

AMSUA only assimilation minus NORAD increments

HIRS only assimilation minus NORAD increments

Vertical structure of analysis increments ...

No radiance assimilation (NORAD) increments

AIRS only assimilation minus NORAD increments

AMSUA only assimilation minus NORAD increments

HIRS only assimilation minus NORAD increments

The size and vertical structure of increments is higher with AIRS ...

- Complete diagnosis of single instrument experiments
- Study modification of observation error covariance (O)
- •Further study of de-noised Principal Component (PC) data
- Improve bias correction
- Study introduction of cloud contaminated / cleared radiances
- Develop advanced sounder radiative transfer model (RTM)
- Complete CO2 production (COCO) and prepare GEMS
- Implement already tested elements (cloud detection / emissivity)

Motivation for Observation error Study

So should we set the observation error to low values

Experiments with different (diagonal) Observation Error

Analysis fit to NOAA-16 AMSU-B data

Estimating AIRS observation error

Contributing elements ...

- o Fast model error
- o LBL error
- o Instrument noise
- Non-linearity error
- Non-Representativeness error

But uncorrected biases and poorly modelled correlations may prevent the use of "correct" observation error

- Complete diagnosis of single instrument experiments
- Study modification of observation error covariance (O)
- •Further study of de-noised Principal Component (PC) data
- Improve bias correction
- Study introduction of cloud contaminated / cleared radiances
- Develop advanced sounder radiative transfer model (RTM)
- Complete CO2 production (COCO) and prepare GEMS
- Implement already tested elements (cloud detection / emissivity)

De-noising with 200 NESDIS principal components

- Complete diagnosis of single instrument experiments
- Study modification of observation error covariance (O)
- •Further study of de-noised Principal Component (PC) data
- Improve bias correction
- Study introduction of cloud contaminated / cleared radiances
- Develop advanced sounder radiative transfer model (RTM)
- Complete CO2 production (COCO) and prepare GEMS
- Implement already tested elements (cloud detection / emissivity)

Use of the gamma bias correction for AIRS

EXP = 0001

- Complete diagnosis of single instrument experiments
- Study modification of observation error covariance (O)
- •Further study of de-noised Principal Component (PC) data
- Improve bias correction
- Study introduction of cloud contaminated / cleared radiances
- Develop advanced sounder radiative transfer model (RTM)
- Complete CO2 production (COCO) and prepare GEMS
- Implement already tested elements (cloud detection / emissivity)

RTIASI version 5

New Features:

- □ Multiple scattering by aerosols and clouds (11 aerosol components, 5 types of water clouds and 8 types of ice clouds)
- □ Treatment of heterogeneous cloud cover (weighted average of elemental overcast columns)
- □ Improved integration accuracy for optically thick layers (new linear in parameterization of the Planck function)

Over the next 6 months RTIASI will be formally merged with RTTOV and then the science will be tested using real AIRS radiance data

- Complete diagnosis of single instrument experiments
- Study modification of observation error covariance (O)
- •Further study of de-noised Principal Component (PC) data
- Improve bias correction
- Study introduction of cloud contaminated / cleared radiances
- Develop advanced sounder radiative transfer model (RTM)
- Complete CO2 production (COCO) and prepare GEMS
- Implement already tested elements (cloud detection / emissivity)

CO₂ Assimilation - Validation

A THE THE THE THE TABLE OF TABL